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SUMMARY

Theoretical expressions have been derived by medns of linearized
supersonic-flow theory for the lateral force due to sideslip ~P, the

yawing moment due to sideslip
‘%

, and the rolling moment due to side-

Slip Cz
$

for tail arrangements consisting of a vertical triangular

surface attached to a symmetrical triangular horizontal surface. The
results are valid, in general, for a range of Mach nuuiberfor which the
leading edges of the tail surfaces are swept behind the Wch cone from
the apex of the arrangement and the trailing edges of the tail surfaces
sre ahead of the Mach lines from the tips.

A series of design charts are presented which permit rapid estimates
to be made of the force and moment derivatives. A discussion is also
included on the application of the expressions for the pressure distri-
butions determined herein to other plan-form shapes of the tail surfaces
and possible wing-vertical-tail arrangements. A solution to a two-
dimensions.1“mixed type” boundary-value problem which is needed in the
present analysis but which may also be of interest in other “conical
flow” malyses is presented in an appendix.

INTRODUCTION

The prediction of the stability of complete airplane and missile
configurations requires a knowledge of the aerodynamic forces and mments
acting on all the component surfaces of the afiframe and the rates of
change of these forces ad moments with the attitude, velocity, and
acceleration of the associated surfaces. The rates of change of the
aerodynamic forces and mmnents when linearly related to the attitudes,
velocities, and accelerations are comnonly called stability derivatives.

.. — . ——..-——— — .————- - ——— . —



2 NACA TM 3071

Theoretical estimates of stability derivatives for a variety of
wing plan forms with flat-plate cross sections are now available. Infor-
mation, however, relating to the stabili~ derivatives contributed by
various nonplsmar tail systems is stiU meager.

I
Most of the available

derivatives sre for configurations composed of low-aspect-ratio surfaces
{refs. 1 to 3). In reference 4, however, sideslip derivatives have been
presented for tail arrangements for which all the plan-form edges are

.

supersonic. In references 1 and 5 appro-te estimates of the damping-
in-roll.derivatives for cruciform arrangements with high-aspect-ratio
surfaces have also been reported.

The purpose of the present paper is to provide theoretical esthates
of the lateral force, the rolling moment, and the yawing nmment produced
by the sideslipping motion of a tail arrangement consisting of a triangu-
lar vertical surface attached to a symmetrical triaq@ar horizontal sur-
face. The leading edges of the tail surfaces are subsonic; the trailing
edges, supersonic. Consideration has also been given to the application
of the results presented herein to other plan-form shapes of the tail
surfaces and possible wing-vertical-tail co~inations.

The analysis is performed within the framework of linearized
supersonic-flow theory. Inasmuch as the linearized perturbated flow
within the Mach cone from the apex of the tail is conical (the arrange-
ment is a conical body), the analysis reduces to the solution of a sin-
gular integral equation associated with a two-dimensional “mixedtype”
boundary-value problem. The solution is obtainedby an application of
the general method-sfor evalwtti these integral eqmtions that have
been propounded by Muskheldshvi13 in reference 6.

sYmQIts

The orientation of the tail arrangement with respect to the X, Y,
and Z body axes and the positive directions of the velocities, forces,
and moments are indicated in figure 1.

x, Y, z body-axes coordinates

Yl, q rectangulm coordinates in plane parallel to YZ-plane

v =T)+i{

z =X+iy

f)m,y,a linearized velocity-potential function

u, v, w x-, Y-, and Z-components of perturbation velocity, respec-
tively (v and w are also defined in the v-plane as
being parallel to the q- and ~-sxes, respectively)
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z’ = x’ + iyf

3

,

complex velocities, Uc = u + iu*, vc = v + ifi,

and Wc =W+iw+

harmonic conjugates of the u-, v-, and w-velocities,
respectively

,
free-stream velocity

● ..

free-stream Mach nuniber

free-stream density

free-stream dynamic pressure, ; pvz

pressure

pressure

angle of

angle of

difference across surface

I
coefficient

attack, radians

sideslip, radians

comnon root chord of vertical and horizontal tail

semispan of horizontal tail

transformed semispan of horizontal tail in v-plane

span of vertical tail

transformed

transfomned

transformed

span of vertical tail in v-plane

semispan of horizontal tail in z-plsme

span of vertical tail in z-plane

arbitrary real constants

area of horizontal tail

area of vertical tail

‘,
. -. _.._—.–—._.—. u——-——— .—-–—————- —.— .—— —-- .—— — -
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7 amgle in plane of horizontal tail between a ray through
origin and X-axis

angle between leading edge of horizontal tail and X-axis

t =tan7

AH
to=tanyo=T

E angle in plane of vertical tail between a ray through
origin and X-axis

‘o angle between leading edge of vertical tail and X-axis

r =tan E

Av
ro .tan co==

A=
%2

aspect ratio of horizontal tail, —=4tm70
L%

‘v aspect ratio of vertical

J.L

tail, %2—=2taneo
%

(’-%%I=
k=

()B*A=* + B*A=* EA=B2AV2 - — - —

4 1 16 16 4

cn(u/k)

dn(u/k)
}

Jacobian elliptic functions of argument u and
modulus k

sn(u/k) J

E, E’ complete elliptic integrals of second kind with moduli k

and jl - k2, respectively
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K, K’ complete elliptic integrals of first kind with moduli k

and 11 - k2, respectively

G=
L

-K’\kJ -
4

~=...,.. -_— ~ E’(k)

‘]1 *F-?

Y

L’

N

Cz

lateral force, see figure 1

rolling mment, see figure 1

yawing moment, see figure 1

Y
lateral-force coefficient, —

()af3nc%=T $-+0

rolling-moment

yawing-moment

Subscripts:

H

v

horizontal tail

vertical tail

(

L$~
2

L’
coefficient,

*A

N
Coefficient,

*%@v

- ..
/ _ _. ,- –———..——— ——.—. .—.—— --— — - — — ——
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ANALYSIS

General Consideations

The object of the ensuing analysis is to determine the aerodynamic
pressures and corresponding forces and moments acting on the surfaces
of the tail arrangement sketched b fig-me 1 that sre produced by the
sideslipping nmtion of the tail. The leading edges of the horizontal
and vertical surfaces are subsonic (within the ~ch cone from the apex
of the system) and the trailing edges are supersonic and at zero angle
of sweep. It is stipulated that the tail surfaces sre of zero caniber
and vanishingly small thickness. It is apparent that this tail con-
figuration in sideslip attitude is equivalent (by rotation) to a right
trianguhr wing at an angle of attack with a triangular end plate or
fin at zero geometric angle of attack attached to its streanmd.seedge.
Such an arrangement is sketched in figure 2, and for convenience this
orientation of the tail arrangement is considered in the following
analysis. With the orientation shown in figure 2, the surface approxi-
mately in the horizontal plane ~ at a constant geometric angle of attack
is te~tatively called th-’’wing” and the
and at zero geometric angle of attack is

The analysis is based on linearized
flow theory. Specifically, solutions of
potential equation

surface ‘h the verti&l plane
tentatively called the “fin.”

three-dimensional supersonic-
the linearized three-dimensional

(1)

ere sought that satisfy certain boundary conditions associated with the
wiug-fin arrangement. (These boundary conditions are discussed subse-
quently.) Instead of equation (l), consider the followimg group of
equations:

(2b)

(2C)
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which define the component-disturbance-velocityfields associated with
the velocity potential of equation (1) and are more appropriate for the
ensuing analysis. Once a proper solution to equation (1) or (2) has
been obtained, the expressions for the lifting pressure maybe readily
determined from the linearized mmentum equation

or

42—= - AU(X,Y,Z)

& v
(n)

where @# is the velocity-potential difference across the surface
and Au is the corresponding longitudinal velocity difference or
pressure-velocity difference across the surface. E@ations (3) are
consistent with the linearized theory only if the magnitudes of the
perturbation velocities are equal across the lifting surface. When
the magnitudes of the perturbation velocities axe not eqyal across the
lifting surface, equations (3) should contatidifferences in the squares
of the disturb~ce velocities v and w. The squared terms lead to
derivatives which are linear functions of a; therefore, these terms
vanish because our primary interest is the evaluation of the rate of
change of the aerot@amic forces and moments as a approaches zero.

Because of the conical geometry of the wing-fin arrangement, the
following analysis to determine the required solution for the pressure
employs the concepts of conicsl-flow theory. This concept @lies that
all disturbance-velocityquantities such as u, v, and w remain con-
stant along rays emanating from the origin (apex of arrangement) and
hence become functions of only two independent variables that specify
the direction of the ray.

Busemsmn (ref. 7) initially showed that the assumption of conical
flow implies mathematically that the disturbance-velocityfield within
the Mach cone of the system is governedby an elliptic differential
equation, and by a transformation of coordinates this equation reduces
to the two-dimensional Laplace equation with respect to either the u,
v, or w perturbation velocity. The problem of obtaining a solution
to equation (1) or (2) therefore reduces to one of obtainhg a solution
to Laplace’s differential equation in two dimensions subject to certain

1 -_..____ ._.. ----— ——-- —— .— —- _—— —-
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boundary conditions. These considerations lead naturally to a mode of
solution using complex-functionmethods (refs. 8 to 10) and associated
integral-ecyxationconcepts. The following sections present an analysis
and solution of the wing-fin problem based on these procedures.

Prescribed Flow Conditions

A sketch of the wing-fin arrangement showing the body axes used in
the analysis is presented in figure 3. Denoted also in this figure are
the prescribed values of the disturbance velocities u, v, and w and
their spatial derivatives in the plane of the wing and plane of the fin.
These prescribed values of the velocities sad their derivatives are
determined from a knowledge of the boundary conditions, the symmetry
conditions, and the equations of irrotationality.

The boundary conditions are as follows:

On the Mach cone surface,

U.v. w. o

on the wing surface,

and on the fti surface,

( )v X, O*, Z = o

From symmetry considerations (see ref. 10) it can be shown
the plane of the wing the antisynmetric u- and v-velocities are

that in
zero off

the wing. In the p~e of the fin, however, the tangential velocities
are not zero off the fin because the arrangement lacks symmetry with
respect to the XZ-plane; in fact, these velocities must be continuous
across this region.

The use in the equations of irrotationality of the given boundary
values of the velocities, together with values of the velocities deter-
mined from symetry conditions, produces the additional prescribed
values of the velocity derivatives denoted in figure 3 and needed in
the analysis. It is also stipulated that, as the leading edges are

.

.
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approached, the disturbance velocities become locally binite as the
-1/2 power; that is, the flow around the subsonic leading edges behaves
in the same manner as the flow around the leading edges of thin flat
plates in an incompressible flow (see refs. 9 and 10). This stipula-
tion on the type of edge singularity can be used in order to obtain
a unique solution to the integral equation of the boundary-value problem
that is solved subsequently (see appendix A).

Transformation of Supersonic Conical Flow to

Two-Dimensional Incompressible Flow

The transformation of the supersonic conical-flow equation in u,
v, or w to the two-dimensional L&place equation was initially conceived
by Busemann and expanded in concept smd usefulness by many researchers,
in particular, Lagerstrom, Germain, and Multhopp. Excellent discussions
of the entire subject are given in the reports by these investigators
(see refs. 10, 8, and U_, respectively). Only relations pertinent to the
present analysis are therefore considered herein and the reader is referred
to the references for proofs and detailed discussions of the relations to
be presented.

Figure 4 is a sketch of an arbitrary crossflow plane in the XYZ-space.
The fact that the body is conical and wholly contained within the Mach
cone from the apex of the system de- that the u, V, and W dis-
turbance velocities are homogeneous of zero order and are uniquely defined
in any crossflow
functional form

u

plane; that is, the u-, v-, and w-velocities have the

(0z=u--
E)

zv=v—— w=
()

Yz
‘x ‘x ??

Now if the X-, Y-, and Z-coordinates me transformed in the following
manner:

Y1 =B;

‘1 =B:

(4)

.,
( _... — —.—- — ——__— . —. —..— ——-—— ——- ——-—-——
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then equations (2) defining the u-, v-, and w-velocities are transformed
into elliptic differential eqpations in the two variables yl and Z1.

Ap@ication of the noncotiormsl transformation (see ref. I-1)

transforms

v-plane in

Y1 i‘1 1 - %2- Y12
v =q+ig= -t-i (5)

1 f-z 1 la-z

the u-, v-, and w-velocities from the ylzl-plme to the

which each of the disturbance velocities satisfies Laplace’s
equation; that is, in the v-plane,

+1.l=o

A=o

#w=o

where # tithe ~placian operator ($+$). The effect of the

transformation expressed by equation (5) is to deform the dotily con-
nected smnukr region between the Mach cone and the body in the ylzl-plane

(see fig. 4) into a doubly connected open-slit region in the v-plane (see
fig. 5). The continuous cut (l,rn,-1) in the v-plane corresponds to the
Mach circle in the ylzl-plane. If the v-plane is considered as composed

of two sheets, then the region external to the Mach circle in the
ylzl-plane transforms into the lower sheet of the v-surface and is con-

nected to the upper sheet
transformed Mach circle.
zontal and vertical sxes,
ment is preserved (except

It shouldbe pointed

through the branch cut (l,co,-1),that is, the
The transformation dues not distort the hori-
and hence the shape of the wing-fin arrange-
for scale) in the v-plane.

out that, since the wing-fin contour is trans-

.

formed to one sheet (the Wer sheet) of the double-sheeted v-surface,
the correspondencebetween the velocities in the crossflow plane of the
original XM%ystem within the Mach circle and the upper sheet of the
v-surface is 1:1. Furthermore, since the transformation is conformal in
the neighborhood of the q- and ~-axes, the prescribed values of the
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velocities and their spatial derivatives which are constant along the
wing plane and fin plane in the original space remain constant along
the q- and (-axes in the v-plane.

If the complex velocities uc = u + iu*, Vc . v + iv+, and

WC = w + i# are considered in the v-plane, then from the analysis of
Hayes and Multhopp (refs. 9 and l-l)the ensuing comparability relations
(which take the place of the equations of continuity and irrotationality)
provide the necessary relations in the v-plaae for attempted solutions:

dvc = - :duc

dwc = -iB ~ d%
v

(6a)

(6b)

In terms of the real parts of Uc, Vc, and Wc, the relations of equa-

tions (6) are as fo~ows (see ref. 11):

For ~=0 and -1~~~1,

~au_ b
aq ‘“~

J&=

ac -r%
(7)

— .— ———-—_ .—-——. . . ———. ..— ——.— — — — ..z .—..— . .. .——. .–.
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and for q=oand<+o,

NACA TN 3071

&r Jl+fau—=
a! { ~

av J&k—=
ag ( aq

av B~@
~= ga{

~ using these relations, general soltiions for
turbance velocities cam be determined, provided
any one of the velocities.

(8)

the u, v, and w dis-
a solution exists for

Evaluation of the u Perturbation Velocity

(Pressure Veloci@) in the v-Plane

The evaluation of the u perturbation veloci~ in the v-plane
t~es on its simplest form when the complex sidewash velocity Vc along

.

the wing-fin contour is initially determined and the u-velocity is then
derived from the sidewash velocity by using equations (6) or (7). The
expression for the sidewash velocity along the contour has been evaluated
in appenti Aby obttiing a soltiion to the titegral equation defining
the sidewash in terms of its prescribed boundary values.

In appendix A the expression for Vc is initially derived in a

z-plane which is obtained conformably from the v-ptie by the following
transformation:

rv’+h’z =x+iy=~

l+h’

where the plus sign is valid for x>O andtheminus sign for x<O.
Figure 6 is a sketch of the z-plane and shows that the wing-fin contour
of the v-plane becomes a slot along the real sxis (the x-axis) of the
z-plane. The details of the transfomtion from the v- to the z-plane
are given in appendix A. ti the z-plane the expressions for the u-,
v-, and w-velocities can be expressed much more compactly and simply

—
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than in the v-plane and for this reason many
for the velocities sre given in this plane.

13

of the following soltiions
The expressions for the

real and inw@sry parts of the complex sidewash veloci~ along the
transformed contour in the z-plane as derived in appendix A are as
follows:

( a=V+(X,O+) =el +

where ‘1 d ‘2 we arbitrsry real constants.

The u-velocity is immediately determhed from the following rela-
tions tithe v-plane that canbe determined from equations (6):

(I)=o; ~>o) (12)

In the z-plane these relations become

‘au(:f+)’-i=v==?av(;:+) b==%) (’3)

& =fiw- (Osx,.
‘ au(x,o+)

)J

—_——— -. .— — —-
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Equation (13) relates the u- and v-velocities along the transformed
wing contour in the z-plane; equation (14) relates the #- and
u-velocities along the transformed fin contour in the z-plane.
Integration of eqyations (13) and (14), with equations(9) and (m)
for v and # taken into account, produces the following solution
for the u-velocity:

U(x,o+) = - m
B {[ 1/–

‘lPd-%)+epx;xh&-

[

‘1
1}

~(xd - %) + ‘2 ~

The relationship

equation (15) in
known to be zero
z-plane u(x,0+)

J

between el and e2 is easily determined by using

the following manner: In the v-plane U(0-,d) is
from the physical boundary conditions. Hence in the
is zero at- x

u-velocity, if x is set equal

to zero, the following relation

;o-~. ~- eqmt,on (15) for the

‘xh and U(X, d) iS Set e~Ud

between e, and eg is obtained:

2e2

el=xh-%

.

The same relation between el and e2 is also obtained from the con-

dition that the circtition along a closed path enclosing the wing-fin
contour must be zero (see ref. 11). The substitution of el, in terms

of e2, into equation (15) yields
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U(x,o+) = i+- ++ ?)f-

The constante2 has been evaluated in appendix

(-%s x s x~) (17)

B and my be simply

expressed as

“=i-=’i
where

‘=Eh’’(k)+%ll=”

In the equation

first kind with

integral of the

1- {( 2)(’- %2)~h~-l-xh

k=

%-%

for G, K‘(k) is the complete elliptic integral of the

mod~=r, k2 and E‘(k) is the complete elliptic

second kind with modulus m. The parsmeter k

necessary for the determinantion of G may be expressed in terms of the
geometric characteristics of the tail system (see appendix B). These
relationships sre illustrated in figure 7.

The u-velocity along the contour in the z-plane
given as

( )1.~l+~ %+xU(x,o+)
EGx Xd-x

is now uniquely

(18)

The expressions for the u-velocity along the wing and fin contours
in the v-plane (see fig. 5) are easily obtained from equation (18) through
the use of the transformation

——..———. .. —- .. ——— — ———— ---——- -————.-. ——.—
—-- ..——
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rV* + h2
z =X+iy. t

l+h2

where, as previously stated, the plus sign is valid
minus
along

Along

along

(19)

for x>O and the
sign for x < 0. In the v-plane the expressions for the u-velocity
the contours become:

the wing (Osq~d),

u(q,o*) =f
2~+d&2)JX

the upper h&U of the fin (0~~ ~h),

and along the lower half of the fin (-h ~ ~ ~ O),

(20)

(21)

The equation for u on the lower half of the fin (eq. (22)) has been
obtained from equation (21) for the upper half of the fin by applying
the known condition of antisymmetry of the u-velocity with respect to
the q-axis.

The expressions for the pressure distributions for the wimz and
fin follow ‘mediately from e&ations (20)
the following linearized pressure-velocity

P = -pvu

to (22) through the &e of
relation:

(23)

—-—
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where p represents
yields the following
Wi13g and the fin:

4—=
12
.#f

the disturbance
expressions for

d),

17

pressure. The use of equation (23)
the pressure coefficient for the

p(l-l,o-) - P(q,o+)

l&
2

;~u(%o-)+U(lboq

on the upper half of the fti (O SC ~h),

*= P(c,o-) -p(g,&)

+fF $PV2

(24)

(25)

.—. —— ._. ———- _.— _—. - ——-—- —— — ————
r
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and on the lower half of the fin (-h ~ C ~ O),

g=~[-&){m&-

h+@7
F=w’=72 1

(26)

Evaluation of Pressure Relations for the Vertical- and

Horizontal-Tail Corribinationin the Original Space

The results of the preceding analysis (in particular, eqs. (24)
to (26)) aUow the evaluation of the pressure coefficients for the wing-
fti arrangement in the original XYZ-space. It is convenient, however,
at this point to return to the orientation of the arrsmgement that is
shown in figure 1 so that the wing now becomes the vertical tail and
the fin the horizontal tail. It should be recalled that for convenience
in the preceding analysis the tail arrangement of figure 1 was rotated
to the position shown in figure 2 smdthe vertical tail (the lifting
surface) was tentatively called the wing and the horizontal tail (the
end plate) was tentatively called the fin. With this point in mind the
following expressions for the pressure coefficient apply to the vertical-
and horizontal-tail combination orientated as shown in figure 1 and obey
the sign conventions indicated therein. The expressions for the pres-
sure coefficients in the original XYZ-space me obtained from equa-
tions (24), (25), and (26) by the following transformation of the q,!

vsriables (fig. 5) to the ~,~ variables by using equations (4.)and (5):

In the plane of the vertical tail

n =B$=

-blr

(or wing),

Btane. Br

Wr

(27)

(28)d=B~=Btanco43ro= —
% 2’



where r is the slope of a ray from the apex, ~ is the span, E. is the semiapex angle,

and Av is the aspect ratio of the vertical tail.

In the plane of the horizontal tail (or fin),

$- B2(f)2ll-B’*% j,.-%%,

where t la the slope of a ray from the apex, bH/2

angle, and AH is the aspect ratio of the horizontal

(29)

(30)

is the semispam, 70 is the semivertex

. trlil. The substitution of equations (27)

to (30) into the pressure-coefficient equations (24)b (26)results in the following relatiom

for the pressure coefficient for the original tail arrangement in the XYZ-space of figure 1:

For the vertical tail,

($)::(+i=2*)\ ~/&y&2 ‘“)

!3



for the lefthalf. of the I_orizontil tail,

L

(
1-

-—

“i%7#lR%t%% ’32)
ad for the right half of the horizontal

r
I

1

(33)
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The parameter G appesrimg in these expressions may be determined from

figure 8 wherein the variation of

presented for different values of

mations of G from figure 8, the

#AV2 16

r

—-lGwith EAV iS
4 B2A~2

BA=. In order to facilitate esti-

4 VB’A~

BAv for various values of EAH is presented in figure 9.

An idea of the spanwise variation in pressure and resultant pressure
for a typical vertical- and horizontal-tail combination maybe obtained
from figure 10. These results were obtain~ by use of equations (31)
to (33).

It is of interest to know the expressions for the pressure coeffi-
cients for limiting cases of the tail arrangement obtained, for exsmple,
by setting the horizontal-tail span equal to zero or letting all the
leading edges coincide with the Mach cone traces in the plane of the
tail surfaces (sonic leading edges). Such expressions are obtained from
the general expressions - equations (31) to (33) - for the pressure coef-
ficients, provided the limiting values of the parameter G are avail-
able. The values of G for a nuniberof limiting cases of the tail
arrangement have been evaluated. These values of G, together with the
corresponding expressions for the pressure coefficients, are presented
h table I. It should be noted that results presented in table I for
various limiting szrangements sre
results (refs. 4, U?, 13, andlk)
limiting managements.

Evaluation of

identical t: previously published
that are available

Forces and Moments

for some of these

The resultant aerodpmic forces and moments acting on the tail
arrangement in a sideslip attitude axe easily obtained by use of the
pressure-coefficient expressions givenby equations (31) to (33). The
expressions for the resultant forces and moments to be determined obey
the standard sign convention indicated in figure 1.

—— -- . —.——— ——————————- ----— —
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Lateral-force derivative Cyp.- For the tail arrangement in a posi-

sideslip attitude, the lateral force is defined as

Y= -cl m)4Yv axti

‘%

(34)

where
U

@ is the pressure coefficient for the vertical tail and *
~v

represents the vertical-tail area. The minus sign is prefixed to the
integral so that the lateral force obeys the sign convention indicated
in figure 1. It is clear that the horizontal tail gives a null contri-
bution to the lateral force. The lateral-force derivative is defined as

(35)

()The substitution into equation (35) of the expression for ~
~v

obtained

from eqpation (31) yields, after integration, the following expression
for CyP:

%p=- +
&’Av2 B2AH2

)

(36)
4 + 16 _ B2AH2

As stated previously, estimates of the factor G can be
figures 8 and 9. The variation of B% with EAv for

P
of BAH is presented in figure 11.

obtained from
variou9 values

. .
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Rolling-moment derivative Cl .- The rolling moment produced by

a positive sideslip attitude of the tail is defined as

where SH represents the horizontal-tail mea. Note that the horizontal
tail contributes a positive moment to the total rolling moment. The
rolling-moment derivative is defined as

[( 1h L’
Czp= ——

ap qsvbv

–p+o

Substituting into equation (37)

~z,)V+pz~)H (37)

the expressions for
(?)V ‘d ($JH

obtained from equations (31), (32)) and (33) d then Perfo- the
necessary integrations yields

-!-
-1Sh (M

.— —-.-—— —.—.— .+..— ..— —.——. —
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and

(%)H“
8(1.%)
&’@

L “ “ J

1
1 —-

variations

in figmes

[ GJ\ 4/
-J

()
of B Cz

U
and B Cz With WV - ~H =e

pv ~H

12 and 13, respectively.

(39)

.

presented

—-
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Yawing-moment derivative ~ .- The yawing moment about an axis

through the apex of the arrangement is given by

N=q]%(~~xtidz

(the horizontal tail offers
N may a~o be written as

no contribution to the yawing moment);

(40)

where X is the x-coordinate of the point at which Y acts (often
referred to as the center of pressure). An examination of the equation

for
()
&~ ~ (eq. (31)) shows that it is conical in form; hence, the

.
point ~ will be $% for a triangular vertical tail. This statement

may be expressed in equation form as

The yawing-moment

(41)
JIJ)4TV xdxdz

z=

~ dxdz

=$%

J()%qv

derivative may now be simply expressed as follows:

%

:%

-~%p
‘-F:~= %1

(42)

or, by utilizing eqution (36),

%=3,:.(,$+1=)
(43)

—— —— —- -—
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convenience, the vsriation of %B with BAv for a range of values

determine CnP for some

transfer formula is

~H is presented in figure 14. In order to

other position of its moment axis, the following
needed:

.

(44)

between the new positionwhere Z is the distance psrallel to the x-exis
of the moment sxis and the apex of the tail. Considering equation (41),
equation (44) may also be written as

() 4
Cnp’=-~+—

% WV%
(45)

DISCUSSION OF REEXIUE

In the foregoing section general expressions for the sideslip deriva- -
tives CYp (eq-(36)), Czp (ew. (37) to (39)), ma %P (q. (43))

were derived. It is of interest to present results for some limiting
cases of these expressions. Tsble II contains analytical expressions
for these derivatives for the same limiting cases of the tail arrange-
ment that were considered for the pressure coefficients presented in
table I. For the limiting case BAv = 2, that is, for a vertiCal

tail with a sonic leading edge (the Mach line coincides with the leading
edge), the variation of BCy ,

P
BCZP, and ~P with ~H is presented

in figure 15. In a simikr manner the variation of these derivatives
with ~V for ~H = 4 (the leading edges of the horizontal-tail me sonic)

is presented in figure 16. From figure 14 the result that the yawing-
moment-coefficient derivative of the vertical tail %P is finite for

EAv = O is at first sight surprising. One would expect all derivatives

to vanish when the disturbance surface (the vertical tail) vanished;
however, it is to be recalled that the derivative CnP is made non-

dimensional with respect to ~~ and, although the yawing moment N

vanishes as ~~0, the ratio N/~~ which is in essence the coeffi-

cient remains finite since bv ~0 as ~~ O and ~bv gives m

infinitesimal of the same order as N when SV+O.
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An indication of the variation of CyP, Clp, and ~
P

with Mach

number for fhd aspect ratios of the vertical and horizontal tails can
be obtained from figures 17, 18, and 19, respectively. The results pre-
sented in these figures for supersonic leading edges (the Mach lines
behind the leading edges) were obtained from reference 4.

Although the results of the analysis presented herein are for a
tail arrangement consisting of triangdar horizontal and vertical sur-
faces, the results couldbe easily extended so as to include tails with
sweptback or sweptforwsrd trailing edges but of zero taper (as sketched
in fig. 20), provided the angle of sweep of the trailing edges is less
than the sweep angle of the I@ch lines from the apex of the trailing
edges (supersonic trailing edges). This limitation follows of course
from the classic results of linearized flow theory that disturbances
propagate only downstream and the pressure coefficients presented
herein for the triangular surfaces would aho be valid for sweptback
or sweptforward trailing-edge surfaces with the stated limitation.

It is of interest to note that the expressions for the pressures
presented in table I for the case where the leading edges of the hori-
zontal tail are sonic are also valid for the wing-vertical-tail
arrangements sketclmi in figure 21, provided of course it is realized
that the wing must be at zero angle of attack and that the Wch lines
from the apex of the vertical tail that are in the plane of the wing
must intersect the trailing edge of the wing.

CONCLUDING REMARKS

Application of linearized theory has enabled an evaluation of the
lateral force due to sideslip CyP, the rolling moment due to side-

Slip CZB, and the yawing moment due to sideslip
%

for a tail

arrangem&t consisting of a vertical triangular surface attached to a
symmetrical horizontal triangdar surface. A series of design charts
have been prepare,dwbich permit rapid estinates to be made of all the
derivatives for a range of l&ch nunber for which the leading edges are
subsonic and the trailing edges are supersonic.

The expressions for the pressure coefficients determined, in addi-
tion to being valid for the plan forms considered herein, are Uo valid
for tail arrangements with sweptback or sweptforwsrd trailing edges but
of zero taper, provided the angle of sweep of the trailing edges is less
than the sweep angle of the Mach lines from the apex of the trailing
edges.

—-. .— —— —. .—- . .——— -—-–—-—— —
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The expressions for the pressures also apply without change to cer-
tain wing-vertical-tail arrangements, provided the wing is at zero angle
of attack and the Mach lines from the apex of the vertical tail that are
in the plane of the wing intersect the trailing edge of the wing.

The solution presented for the two-dimensional “mixed we” boundary-
value problem and needed in the present analysis is fundamental for prob.
Las involving vertical- and horizontal-tail conibinationsand is suitable
for application to more complex systems than those considered herein.

Langley Aeronautical Laboratory,
National Advisory Conmd.tteefor Aeronautics,

Langley Field, Vs., October 16, 1953.
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EVALUATION OF THE LINMKUED DISTURBANCE VELOCITY

ALONG THE CONTOUR OF THE WING-FIN

ARRANGEMENT ~ ~ V-m

The evaluation of the tsmgential disturbance velocity along the
wing-fin contour in the v-plane can be performed by an application of
techniques discussed by Muskhelishvili in his book on singular integral
equations (ref. 6).

First, the v-plane is conformably transformed into the z-plane
by use of the transformation

r#+h2z =X+iy=t —
l+h2

(Al)

where the plus sign is valid for x > 0 W the minus sign is valid for
x <0. In the z-plane (see fig. 6) the image of the wing-fin contour is
a slot along the real axis (the x-axis). The branch cut (1,CO,-1) in the
v-plsne representing the original Mach circle retains itself along the
real axis in the z-plane.

Since the z-plane is a conformal map of the v-plane, the complex
velocities ~ = u + iu*, vc = v + i~, and Wc = w + iw+ which satisfy

the Laplace equation in the v-plsne also satisfy the Laplace equation in
the z-plane. The given boundsry values of u, v, and w and their
spatial derivatives which are constants along the real and imsginary axes
in the v-plane therefore r~ constant h the z-plene along the real axis.

It will be found expedient to determine the variation of v-velocity
(the real pm% of vc) along the wing-fin -e (from x = .xh to

x=%). Inasmuch as this lateral velocity is sntisymetric with respect

to the ~-axis in the v-plane and the w@g-fin contour is symmetric with
respect to the q-axis, it is necessary to consider a solutiw for v h
only the upper half of the v-plane and therefore h only the upper half
of the z.plsme. Figure 6(b} is a sketch of the upper half of the z-plane
and shows the appropriate boundary values of v and @ along the real
axis. ltcomthe boundary condition that w = a.. on the ~, it is

_—.. .._. —— -——.-. — —- .—. —.—. .— -—--— ——–— -—-—-———— —
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possible to determine that @ = O (or constarb) along the wing segment
xh~x~~ in the fol.lowingmanner. By using equations (6a) snd (6b),

the relation h the v-plane between Vc

dvc = i

b

Along the wing-axis v = q, and by using
expressed as

and Wc is found to be

dwc (A2)

equation (A2) dfi can be

dw (-lg~~l) (A3)

Now W = Constant along the wing segment O ~ q ~ d or dw = 0; hence,

v+ = Constant. This constant may be set equal to zero (see ref. 6).
This condition @ = O remains valid along the image of the wing segment
in the z-plane.

There is one factor in the transformation of the wing-fin contour
from the v-plane to the z-plane that requires particular attention.
Note that the point ih representing the leading edge of the fin in
the v-plane transforms tito the origin h the z-plane and that the two
faces of the fin spread out along the real axis of the z-pine} one on
each side of the origti, ~ form a cont~uous se~nt (-xh~O#h)= Now

if the origin is approached from above along the line x = O, the
v-velocity will become infinite in the imediate neighborhood of the
origin even though the origin does not represent a free edge such as
~ where singularities in the boundary functions are usually allowed.

This discontinuity in v follows directly from the behavior of the
v-velocity in the neighborhood of the fin leading edge ih in the
v-plane. In this plane as the fin edge ih is approached from above
along i~, the v-velocity becomes a singulari~ of order -1/2; hence,
in the z-plane as the origin (the imge of the point ih) is approached
from above along iy, the v-velocity becomes a singularity of order -1.
The fact that the singulari~ in the v-velocity near the origin in the
z-plane is of -1 order arises from the double-valudness of the trans-
formation from the v-pkane to the z-plane. For the sfisequent analysis
the point to remember from the present discussion is that the v-velocity
function does not continuomly approach its prescribed values for all
pOfitS of the Open .Segm_t ‘xh < X< xh but becomes discontinuous as

the origin is approached along x = O. Along the rmaining segments
defining the wing-fin image in the z-plane, the v-velocity can be shown
to approach its boundary values continuously except at free edges where
singularities are of course allowed.

.—
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As indicated previously, the solution for

ana~is of reference 6. In order to associate

31

VC is based upon the

the present analysis
directly with the general treatise on boundary-value problems in refer-
ence 6, one additional transformation is needed; this transformation is

z’ =
2Z- (:+%)

(A4)

In figure 22 the transformed wing-fin contour in the z‘-plane is sketched
and the correspondingboundary values of v along L‘ and @ along
L“ are noted. It should be noted that only the upper bald?of t@e
z‘-plane is being considered with boundary conditions prescribed along
the axis of reals. The problem at hand of deterdning Vc may be named

the two-dimensional mixed-type %oundary-value problem for the hdf plane.

It is well-hewn (see refs. 6, 8, and U) that the solution to this
type of boundary-value problem essentially involves the solution of the
singular integral equation along L

f

46’)
—dX’= M2(X’)

Lx’-~
(A5)

where

$ indication that the principal part of the integral is to be
taken

L union of smooth nonintersecting arcs or a group of dis-
connected segments Lt md L“ along axis of reals

2(X’) prescribed boundary function along L that must be at least
continuous withti the open intervals L: and L“ of L
(2(%’) in the present case would correspond to prescription
of V(x’) and @(X’) dO~ L’ and L“, respectively)

I)-(x’) unhewn function along L that is to be deterndned so as
to be homomorphic in the region excluding L and approach

[
on L the 2 ~) condition wherever prescribed (~(x’) corre-
sponds to Vc x’) in the present instance)

In reference 6, Muskhelishvili presents a thorough study of the
integral equation (A5), with particular attention given to the existence
and uniqueness of soltiions. l%e case where 2(x’) is real and imaginary

———.-.——————- —.-— _—— —— —--———— —--.— — ——————-—— —-——
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along alternating segments of L (mixed-@pe boundary values) has
received detail~ attention. It is this case that is of primary inter-
est in the present analysis for the solution of Vc along the given

boundary and is now considered in detail.

Specifically, the unique function Vc(x’,&) = V(X’,0+) + i@(x’ ,0+)

satisfying equation (A5) is needed; this function is to be homomorphic in
the upper half plsne y’ > 0, to be bounded at infinity, and to satisfy
the given boundary conditions (see figs. 22 and 23)

on L’,

V(x’,o+) = f(x’) (A6a)

on L“,

V+(x’,o+) =g(x’) (A6b)

where f(x’) and g(x’) axe continuous and finite along the open inter-
vah of L’ and L“ and are bounded and zero at one end point of each
interval but may have -1/2power singubrities at the other end point of
these intervals. In addition, it is assumed that g(x’) for large values

of x’ is subject to the conditions

Mm g(x’) = Mm g(x’)
x’+- X1+-M

g(x’) - g(m) < CoMbt
(x’)@

where

.

(a> O) (A7)

g(m) = lim g(x’)
x ‘~+JO
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lRromthe subsequent
is satisfied in the

analysis it can be
present case. The

78di6 hg c0miti0n8 (A6)
p. 253 as

and (A7) iS

33

seen that inequality condition (A7)
general unique solution for vc

given by Muskheliehvili (ref.

@Jxf)

6,

(A8)

where

{

f(~) on L’
h(~) =

ig(~) on L“

R-@ = :,( ’-’,)
and ajbj (j=l,2, . . . p) define the disconnected segments albl,

a2b2, . . . along the axis of reals (see fig. 23). The application of

the general solution (A8) to the particular case herein requires some
additional considerations. First note that in the present instance,
along Lr,

V(x’jo+) = f(x’,o+) = o (A%)

and along L“,

V+(x’, O+-)= g(x’, d) = o (J@)

Now consider a modification of the given boundary-value problem in which
the singularity in V(X’,&) in the neighborhood above X.’ is temporarily

——. . _ ________ ._ —. —.. — ——. -.—-—-——- —
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neglected. For this case v approaches zero

approached from above. With this stipulation

lwA TN 3071

uniformly as ~’ is

and conditions (A9) the
general solution (A8) reduces to the complementary
geneous solution)

solution (or homo-

where

in the

,. ~c(x’j i
el C-5L=

1 x’ - bl

el is an arbitrary constant. The constant

body of the paper (see eq. (16)).

Consider now the contribution to the solution

(Ale)

el has been evaluated

of the singularity
in v (of the order -1) as ~’ is approached from above al&g x’-= Xo’.

This contribution to the solution is represented by the integral term on
the right-hand side of equation (A8) and canbe evaluatedby use of the
following expediency. Assume the boundary is cut at ~’ and then dis-

placed an infinitesimal distance 2e parallel to itself; this open
region is then filled in by a 2C segment of the ~ = ~’ line that

is normsl to the boundary. Now the mdified boundary in the infinitesimal
neigliborhoodof ~’ contains the singularity in v that was originally

in the iumusdiateneighborhood above ~’. Along this modified portion of

the boundary between ~’ - ~ and ~’ + c the v-function takes on the

form

where

=X1-E
?0

and

%2=XO’+G

Equation (All) merely represents the transformations of the original -1
singularity from the x’ = ~’ line to the yl = O line, the unit sin-

gularity redistributing itself as two -1/2 power singularities, one at
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%’-’ and one at ~’ + ~. Stistituting the expression for v from

equation (All) for h(~) in equation (A8) results in the following
expression for the singularity contribution to the complex v-velocity:

Application of the mean-value theorem for the
range of integration allows equation (AU2) to

(AM)

prescribed infinitesimal
be more simply expressed as

i

E- bl
where e2’ is an srbitrary constant and the term — has been made

{-y

pa% of the constant. Integrating equation (A13) and then letting ~ +0
yields

r~c(x’l_J2=e2‘ “-al
x’ - %’ “ -bl

The constant e2 has been evaluated in appendix B.

(A14)

This procedure for obtaining equation (A14) for EC(X’] p is by no

means general; however, an evaluation of the integral of equation (AU)
together
boundary

sion for

with detailed considerations of the modification of the original
near x’ = Xo’ (discussed previously) leads to the ssme expres-

~c(x’], that is givenby equation (A14).

complete solution for the complex v-velocity in the z’-plane isThe
given by
tions to
for the v-velocity in the z-plane along

1

the-sumof eqmtions (AIO) and
the z-plane by use of equation

(Al&L). !lr~forming these rela-
(A4) yields the following equation
the boundary -~ ~ x ~ ~:

-- —.—... -.—— .— ————. _..



36 NACA TN 3071

( hJ‘2 ‘“xhVc(x,d) = el + ~ —
% -x

(Q5)

The real and imaginary parts of equation (A15) correspond to equations (9)
and (10) that are used in the determination of the expressions for the
pressure velocity.
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APPENDIX B

EvaluationOF CONSTANT e2

The constant e2 may be evaluated by an integration of the w-velocity

(the downwash velocity) along the q-axis in the v-plane (fig. 5) from
point d (the image of the wing leading edge) to unity (the end point of
the Mach cone image). Since the w-velocity is constant (equal to aV)
along thewhg segment O~q~(d. e)e+o and equal to zero at ~ . 1,

then the integration of the downwash between the definite Umits
~=(d-e).+omd~ = 1 is a lmown qusntity snd the constant e2

is reaitilydetermined.

The ensuing analysis makes use of the z-plane (fig. 6) which, as
indicated in appendix A and the body of the paper, is obtained from the
v-plane by a conformal transformation. In the z-plane the downwash
velocity W(X,0+) in terms of the u-velocity may be expressed as follows
(see eqi. (7)):

(xa+Es xs q (Bl)

The normal derivative + U(x,o+) may be expressed in terms of the known

u-velocity distribution over the wing-fin contour through the classic
relation (from refs. 6 and U)

i) la J’‘d U~(X’)

U(x, o+) = - – — — dx’
g

(‘Xh ~ x’ ~ %;
31& -Xh x-x’

Q< XS1) (B2)

where

(B3)

_—— — —- ————----—- —
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(The functional notation — u(x,~) is used to indicate

a U(x,o+) =
F 3.EU(:I )

. Incorporating equation (B3) into

equation (B2) results in the following expression:

J%Xh

‘Xh
X’(x - x’)

Xh+ X’

1

I&’
% - x’

Evaluating the integrals in equation (~) and differentiating the result

with respect to x yields

‘1== ,2

;

U(x,o+) =
B

‘(3xh+~) - 2Xh~—
2X2(x - Xd)

— rX+xhx-%

Insertion of equation (B5) for ~u(x, C#) into equation (Bl) yields the
&

following integral expression for the downwash:

~(x,o+)g;d
i-=e2f ’-(3%+xd)%+%+=-

2
[[%

%x

(Xh + %) (’ - ~’)

‘d (x - ‘d)

1

(B6)
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where

39

L

P(x) = (1 - x?)(x - Xd)(x - x~)

and f on the integal sign indicates that the finite part of the inte-
gral must be taken. The evaluation of the integrals of equation (B6) have
been performed in appendix C. The following expression results for the
dowmwash:

where K’(k) and E’(k) represent the complete elliptic integrals of

the first and second kinds, respectively, each with mdulus m.
The quantity k is functionally defined as

1
k=

- ‘d% - 1
1- %2)(1 - ‘d2)

% - xh

The downwash expression (B7) can be compactly expressed as

Then e2 is evaluated as

~(x,o’g:

Y 71

= F0-(-Va)=Va=e2 l+h G

1=— —
2G‘2i=

(B8)

(B9)

(B1O)

.———.. ..—. — .— ———-.. -—. — .--— —
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where G in the z-plane is defined

G=
[
x&(k) +

In the original space, that is, the
for k and G become

NACA TN 3071

b, ,i

E’(k) 2k
(Bll)

k % - xh

XU-space (see fig. 1), the expressions

%02 (1 - B%02) + B%02 - (1 - B2t02)~~
k= (B12)

~B2r02(l - B%02) + B2t02 - Bto

G=

or

2k

[ 1E’(k)
BtoK’(k) + —

B2t02) + B2t02 - Bto k
(B13)

. .

G=

I [

EAH
K’(k)

T
+ 1E’(k)

k
(B15)

The variation of k with EAv (Av is the aspect ratio of the vertical

tail) for different values of BAH (AH is the aspect ratio of the

horizontal tail) is presented in figure 7. Similarly, the variation
of G with BAv for various values of ~H may be obtained from fig-

ures 8 and 9.
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APPENDIXc

EVALUATION OF INTEGRAIS APPEARING IN THE EXPRESSION

FOR THE DOWNWASH

From appendix B the integral expression
by

fob the downwash is given

[J~(x,o+ij=- ‘s2(,% + XJ 1 &x
-1-

%2
% II

1- *)(X - %)(x - XJ

[J
1

J
1

%+% dx
-%

ax

% %x (1‘x2)(x -~)(x-xh) ~ +(1 - E)(X - %)(x - Xh)

(%+ %)(1- Xdp) f 1

J

ax

% Xa (x -. 1%)3/2 ~c=q=zj

(cl)

The index f indicates that the finite part of the integral must be
taken. The inte~als appeartig on the right-hand side of equation (Cl)
are essentially elliptic and csm be transformed into the standard form
(plus elementary integrals) by use of the linear transformation

T

The transforms for xd and

%

k-%
1+1 --d’=
k-

I-s+x

2k + k2Xh + xh
=

k2+2kXh+l

1

.

-2k+k2~+~
=

k2-q+l

(C2)

(C3)

_. —.— — —-- ——.—— ——-— —- —--
..— —.. —.-
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where

NACA TN 3071

1- ‘hXd - {~j
k=

‘d - xh

Substitution of equations (C2) and (C3) into the dowmwash expression,

equation (Cl), yields

(c’)

It is obvious from inspection that eqmtion (C4) can be written in
a more compact form; however, the presented form of equation (C4) is
appropriate for rapid examination of limiting cases of the wing-fin
arrangement (for example, when xh . 0, that is, when the fin disappears,

the corresponding downwash integral is readily ascertained). The inte-
grals appearing in equation ((%) are readily evaluated with the aid of
the following substitutions:

T = sn(u/k) 1
(C5)

—-. —
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where sn(u/k), cn(u/k), and dn(u/k) represent the Jacobian eld_iptic
functions of argument u and modulus k. The evaluation of the inte-
grals is as foliows:

In order to evaluate the finite parts of the inte~als

the foll.owingrelation for the finite part was found most convenient:

—

J
—

A(r)dr

J

A(T) - A(a) d~ - bA(a)
(c6)

T2 -a (
a2)3/2 =

a (% - a2)3/2 ‘2-

where A(T) is an integrable function in the
Studies of finite-part concepts are presented.

closed interval ab.
in references 15 and 16.

—— ~ -- ——. — ..— — .
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Application of equation (c6) results in the following evaluations of the
preceding integrals:

. 0
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Figure l.-

L-81261

Sketch of tail mwmgement showing positive directions of

velocities, forces, and mcments.
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Figure 2.- Orientation of tail exrangem?nt for analysis. The horizontal.

surface, lateled wing, was originally the vertical tail. The vertical

mrface, labeled fin, was originally the horizontal tail.
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-e 3.- Sketch of w@-fln arrangement showing pertinent Vd.lES of

the u, v, end w dlsturbauce vebcities end their 6patial derivatives.
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Figure 4.- Sketch of Q_pical crossflow @ane and its orientitlon in the

X, Y, Z axes system.
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(a) Span’wisepressure distribution along a section k-m of vertical tail.
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(b) SpanWise pressure distribution along a section Z-k-2 of
horizontal tail.

Figure 10.- Spanwise pressure distributions along section k-m of vertical

tail and section Z-k-Z of horizontal tail. M = 1.17; Av = 2; AH = 4.
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~.

i.
- L“ ~ L’

1< L“ ~
Y
y
x X h’ x 0’ -Xh’ X d’

:
8

v*= o I V=o I V=o V=o lf. o V=o I v~o
~——— —-—- -

-m

/1(
-----~

Right Left

/

+Cr3

face face

Wing Fin Mach cone Wing

L b-)
Const,

v-+ t
X’-xd Xt+xd,

FigWe 22. - Sketch Of the real axiB of z‘-plane slmwing boundary values

and singular points of v and @ along real axlB. .~1 _

2.-(X:+%)”

~ L“ --+- L’ -+- L“ -+- L’ --+- L“ + L’ --+- L“ —

Figure 23.- Notation used in reference 6 in tiscuasIon 01’mixed-t~e
boundary-value problem for the upper ha~ plane,

s



(JJ:)q ‘i

FOR AERONAUTICS

TECHNICAL NOTE 3071

FORCE AND MOMENT COEFFICIENTSTHEORETICAL

ON A SIDE SLIPPING VERTICAL- AND H0m20NTAL-TAIL

COMBINATION WITH SUBSONIC LEADING EDGES

AND SU3?El%SONIC TRAILING EDGES

By Frank S. Malvestuto, Jr.

Langley AeronauticalLaboratory
LangleyField,V%

Washington

March 1954

— -... .-. .. —7—. —-



IT
NATIONAL ADVISORY COMMITTEE

TECENICAL NOTE

TECHLIBRARYl@FB,NM

Illllllulllulllllllllllll
FOR AERONAUTICS 00 bb21b

3071.
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SUMMARY

Theoretical expressions have been derived by medns of linearized
supersonic-flow theory for the lateral force due to sideslip ~P, the

yawing moment due to sideslip
‘%

, and the rolling moment due to side-

Slip Cz
$

for tail arrangements consisting of a vertical triangular

surface attached to a symmetrical triangular horizontal surface. The
results are valid, in general, for a range of Mach nuuiberfor which the
leading edges of the tail surfaces are swept behind the ~ch cone from
the apex of the arrangement and the trailing edges of the tail surfaces
sre ahead of the Mach lines from the tips.

A series of design charts are presented which permit rapid estimates
to be made of the force and moment derivatives. A discussion is also
included on the application of the expressions for the pressure distri-
butions determined herein to other plan-form shapes of the tail surfaces
and possible wing-vertical-tail arrangements. A solution to a two-
dimensions.1“mixed type” boundary-value problem which is needed in the
present analysis but which may also be of interest in other “conical
flow” malyses is presented in an appendix.

INTRODUCTION

The prediction of the stability of complete airplane and missile
configurations requires a knowledge of the aerodynamic forces and mments
acting on all the component surfaces of the afiframe and the rates of
change of these forces ad moments with the attitude, velocity, and
acceleration of the associated surfaces. The rates of change of the
aerodynamic forces and mmnents when linearly related to the attitudes,
velocities, and accelerations are comnonly called stability derivatives.

.. — . ——..-——— — .————- - ——— . —
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Theoretical estimates of stability derivatives for a variety of
wing plan forms with flat-plate cross sections are now available. Infor-
mation, however, relating to the stabili~ derivatives contributed by
various nonplsmar tail systems is stilJ_meager.

I
Most of the available

derivatives sre for configurations composed of low-aspect-ratio surfaces
{refs. 1 to 3). In reference 4, however, sideslip derivatives have been
presented for tail arrangements for which all the plan-form edges are

.

supersonic. In references 1 and 5 appro-te estimates of the damping-
in-roll.derivatives for cruciform arrangements with high-aspect-ratio
surfaces have also been reported.

The purpose of the present paper is to provide theoretical esthates
of the lateral force, the rolling moment, and the yawing nmment produced
by the sideslipping motion of a tail arrangement consisting of a triangu-
lar vertical surface attached to a symmetrical triaq@ar horizontal sur-
face. The leading edges of the tail surfaces are subsonic; the trailing
edges, supersonic. Consideration has also been given to the application
of the results presented herein to other plan-form shapes of the tail
surfaces and possible wing-vertical-tail co~inations.

The analysis is performed within the framework of linearized
supersonic-flow theory. Inasmuch as the linearized perturbated flow
within the Mach cone from the apex of the tail is conical (the arrange-
ment is a conical body), the analysis reduces to the solution of a sin-
gular integral equation associated with a two-dimensional “mixedtype”
boundary-value problem. The solution is obtainedby an application of
the general method-sfor evalwtti these integral eqmtions that have
been propounded by MuAsheldshviM in reference 6.

sYmQIts

The orientation of the tail arrangement with respect to the X, Y,
and Z body axes and the positive directions of the velocities, forces,
and moments are indicated in figure 1.

x, Y, z body-axes coordinates

Yl, q rectangulm coordinates in plane parallel to YZ-plane

v =T)+i{

z =X+iy

f)m,y,a linearized velocity-potential function

u, v, w x-, Y-, and Z-components of perturbation velocity, respec-
tively (v and w are also defined in the v-plane as
being parallel to the q- and ~-sxes, respectively)



NACA TN 3071

z’ = x’ + iyf

3

,

complex velocities, Uc = u + iu*, vc = v + ifi,

and Wc =W+iw+

harmonic conjugates of the u-, v-, and w-velocities,
respectively

,
free-stream velocity

● ..

free-stream Mach nuniber

free-stream density

free-stream dynamic pressure, ; pvz

pressure

pressure

angle of

angle of

difference across surface

I
coefficient

attack, radians

sideslip, radians

comon root chord of vertical and horizontal tail

semispan of horizontal tail

transformed semispan of horizontal tail in v-plane

span of vertical tail

transformed

transfomned

transformed

span of vertical tail in v-plane

semispan of horizontal tail in z-plsme

span of vertical tail in z-plane

arbitrary real constants

area of horizontal tail

area of vertical tail

‘,
. -. _.._—.–—._.—. u——-——— .—-–—————- —.— .—— —-- .—— — -
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7 amgle in plane of horizontal tail between a ray through

origin and X-axis

angle between leading edge of horizontal tail and X-axis

t =tan7

AH
to=tanyo=T

E angle in plane of vertical tail between a ray through
origin and X-axis

‘o
angle between leading edge of vertical tail and X-axis

r =tan E

Av
ro .tan co==

A=
%2

aspect ratio of horizontal tail, —=4t%u170
Su

‘v aspect ratio of vertical

J.L

tail, %2—=2taneo
%

(’-%%I=
k=

()B*A=* + B*A=* EA=B2AV2 - — - —

4 1 16 16 4

cn(u/k)

dn(u/k)

}

Jacobian elliptic functions of argument u and

modulus k

sn(u/k) J

E, E’ complete elliptic integrals of second kind with moduli k

and ~1 - k2, respectively
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K, K’ complete elliptic integrals of first kind with moduli k

and 11 - k2, respectively

G=
L

-K’\kJ -
4

~=...,.. -_— ~E’(k)

‘]1 Pm@-?

Y

L’

N

Cz

lateral force, see figure 1

rolling mment, see figure 1

yawing moment, see figure 1

Y
lateral-force coefficient, —

()af3nc%=T $-+0

rolling-moment

yawing-moment

Subscripts:

H

v

horizontal tail

vertical tail

(

L$~
2

L’
coefficient,

*A

N
Coefficient,

*%@v

- ..
/ _ _. ,- –———..——— ——.—. .—.—— --— — - — — ——
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ANALYSIS

General Cons ideations

The object of the ensuing analysis is to determine the aerodynamic
pressures and corresponding forces and moments acting on the surfaces
of the tail arrangement sketched b fig-me 1 that sre produced by the
sideslipping nmtion of the tail. The leading edges of the horizontal
and vertical surfaces are subsonic (within the ~ch cone from the apex
of the system) and the trailing edges are supersonic and at zero angle
of sweep. It is stipulated that the tail surfaces sre of zero caniber
and vanishingly small thickness. It is apparent that this tail con-
figuration in sideslip attitude is equivalent (by rotation) to a right
trianguhr wing at an angle of attack with a triangular end plate or
fin at zero geometric angle of attack attached to its streanmd.seedge.
Such an arrangement is sketched in figure 2, and for convenience this
orientation of the tail arrangement is considered in the following
analysis. With the orientation shown in figure 2, the surface approxi-
mately in the horizontal plane ~ at a constant geometric angle of attack
is te~tatively called th-’’wing” and the

and at zero geometric angle of attack is

The analysis is based on linearized
flow theory. Specifically, solutions of
potential equation

surface ‘h the verti&l plane
tentatively called the “fin.”

three-dimensional supersonic-
the linearized three-dimensional

(1)

ere sought that satisfy certain boundary conditions associated with the
wiug-fin arrangement. (These boundary conditions are discussed subse-
quently.) Instead of equation (l), consider the followimg group of
equations:

(2b)

(2C)
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which define the component-disturbance-velocityfields associated with
the velocity potential of equation (1) and are more appropriate for the
ensuing analysis. Once a proper solution to equation (1) or (2) has
been obtained, the expressions for the lifting pressure maybe readily
determined from the linearized mmentum equation

or

42—= - AU(X,Y,Z)
& v

(n)

where @# is the velocity-potential difference across the surface
and Au is the corresponding longitudinal velocity difference or
pressure-velocity difference across the surface. Eqmtions (3) are
consistent with the linearized theory only if the magnitudes of the
perturbation velocities are equal across the lifting surface. When
the magnitudes of the perturbation velocities axe not eqyal across the
lifting surface, equations (3) should contatidifferences in the squares
of the disturb~ce velocities v and w. The squared terms lead to
derivatives which are linear functions of a; therefore, these terms
vanish because our primary interest is the evaluation of the rate of
change of the aerot@amic forces and moments as a approaches zero.

Because of the conical geometry of the wing-fin arrangement, the
following analysis to determine the required solution for the pressure
employs the concepts of conicsl-flow theory. This concept @lies that
all disturbance-velocityquantities such as u, v, and w remain con-
stant along rays emanating from the origin (apex of arrangement) and
hence become functions of only two independent variables that specify
the direction of the ray.

Busemsmn (ref. 7) initially showed that the assumption of conical
flow implies mathematically that the disturbance-velocityfield within
the Mach cone of the system is governedby an elliptic differential
equation, and by a transformation of coordinates this equation reduces
to the two-dimensional Laplace equation with respect to either the u,
v, or w perturbation velocity. The problem of obtaining a solution
to equation (1) or (2) therefore reduces to one of obtainhg a solution
to Laplace’s differential equation in two dimensions subject to certain

1 -_..____ ._.. ----— ——-- —— .— —- _—— —-
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boundary conditions. These considerations lead naturally to a mode of

solution using complex-function methods (refs. 8 to 10) and associated
integral-ecyxationconcepts. The following sections present an analysis
and solution of the wing-fin problem based on these procedures.

Prescribed Flow Conditions

A sketch of the wing-fin arrangement showing the body axes used in
the analysis is presented in figure 3. Denoted also in this figure are
the prescribed values of the disturbance velocities u, v, and w and
their spatial derivatives in the plane of the wing and plane of the fin.
These prescribed values of the velocities sad their derivatives are
determined from a knowledge of the boundary conditions, the symmetry
conditions, and the equations of irrotationality.

The boundary conditions are as follows:

On the Mach cone surface,

U.v. w. o

on the wing surface,

and on the fti surface,

( )v X, O*, Z = o

From symmetry considerations (see ref. 10) it can be shown
the plane of the wing the antisynmetric u- and v-velocities are

that in
zero off

the wing. In the p~e of the fin, however, the tangential velocities

are not zero off the fin because the arrangement lacks symmetry with

respect to the XZ-plane; in fact, these velocities must be continuous

across this region.

The use in the equations of irrotationality of the given boundary

values of the velocities, together with values of the velocities deter-

mined from symetry conditions, produces the additional prescribed

values of the velocity derivatives denoted in figure 3 and needed in
the analysis. It is also stipulated that, as the leading edges are

.

.
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approached, the disturbance velocities become locally binite as the
-1/2 power; that is, the flow around the subsonic leading edges behaves
in the same manner as the flow around the leading edges of thin flat
plates in an incompressible flow (see refs. 9 and 10). This stipula-
tion on the type of edge singularity can be used in order to obtain
a unique solution to the integral equation of the boundary-value problem
that is solved subsequently (see appendix A).

!I!mnsformtion of Supersonic Conical Flow to

!I’wo-DimensionalIncompressible Flow

The transformation of the supersonic conical-flow equation in u,
v, or w to the two-dimensional L&place equation was initially conceived
by Busemann and expanded in concept smd usefulness by many researchers,
in particular, Lagerstrom, Germain, and Multhopp. Excellent discussions
of the entire subject are given in the reports by these investigators
(see refs. 10, 8, and 11, respectively). Only relations pertinent to the
present analysis are therefore considered herein and the reader is referred
to the references for proofs and detailed discussions of the relations to
be presented.

Figure4 is a sketch of an arbitrary crossflow plane in the XYZ-space.
The fact that the body is conical and wholly contained within the Mach
cone from the apex of the system de- that the u, V, and W dis-
turbance velocities are homogeneous of zero order and are uniquely defined
in any crossflow
functional form

u

plane; that is, the u-, v-, and w-velocities have the

(0z
=u--

E)

z
v=v—— w=

()

Yz
‘x ‘x ??

Now if the X-, Y-, and Z-coordinates me transformed in the following
manner:

Y1 =B;

‘1 =B:

(4)

.,
( _... — —.—- — ——__— . —. —..— ——-—— ——- ——-—-——
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then equations (2) defining the u-, v-, and w-velocities are transformed
into elliptic differential eqpations in the two variables yl and Z1.

Ap@ication of the noncotiormsl transformation (see ref. I-1)

transforms

v-plane in

Y1 i‘1 1 - %2- Y12
v =q+ig= -t-i (5)

1 f-z 1 la-z

the u-, v-, and w-velocities from the ylzl-plme to the

which each of the disturbance velocities satisfies Laplace’s

equation; that is, in the v-plane,

+1.l=o

A=o

#w=o

where # tithe ~placian operator ($+$). me effect of the

transformation expressed by equation (5) is to deform the dotily con-

nected smnukr region between the Mach cone and the body in the ylzl-plane

(see fig. 4) into a doubly connected open-slit region in the v-plane (see
fig. 5). The continuous cut (l,rn,-1) in the v-plane corresponds to the
Mach circle in the ylzl-plane. If the v-plane is considered as composed

of two sheets, then the region external to the Mach circle in the

ylzl-plane transforms into the lower sheet of the v-surface and is con-

nected to the upper sheet
transformed Mach circle.
zontal and vertical sxes,
ment is preserved (except

It shouldbe pointed

through the branch cut (l,co,-1),that is, the
The transformation dues not distort the hori-
and hence the shape of the wing-fin arrange-
for scale) in the v-plane.

out that, since the wing-fin contour is trans-

.

formed to one sheet (the Wer sheet) of the double-sheeted v-surface,
the correspondencebetween the velocities in the crossflow plane of the
original XM%ystem within the Mach circle and the upper sheet of the
v-surface is 1:1. Furthermore, since the transformation is conformal in
the neighborhood of the q- and ~-axes, the prescribed values of the
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velocities and their spatial derivatives which are constant along the
wing plane and fin plane in the original space remain constant along
the q- and (-axes in the v-plane.

If the complex velocities uc = u + iu*, Vc . v + iv+, and

WC = w + i# are considered in the v-plane, then from the analysis of
Hayes and Multhopp (refs. 9 and l-l)the ensuing comparability relations
(which take the place of the equations of continuity and irrotationality)
provide the necessary relations in the v-plaae for attempted solutions:

dvc = - :duc

dwc = -iB ~ d%
v

(6a)

(6b)

In terms of the real parts of Uc, Vc, and Wc, the relations of equa-

(7)

— .— ———-—_ .—-——. . . ———. ..— ——.— — — — ..z .—..— . .. .——. .–.
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andfor q=oand<+o,
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&r Jl+fau—=
a! { ~

av J&k—=
ag ( aq

av B~@
~= ga{

~ usingthese relations, general soltiions for

turbance velocities cam be determined, provided

any one of the velocities.

(8)

the u, v, and w dis-
a solution exists for

Evaluation of the u Perturbation Velocity

(Pressure Veloci@) in the v-Plane

The evaluation of the u perturbation veloci~ in the v-plane
t~es on its simplest form when the complex sidewash velocity Vc along

.

the wing-fin contour is initially determined and the u-velocity is then
derived from the sidewash velocity by using equations (6) or (7). The
expression for the sidewash velocity along the contour has been evaluated
in appenti Aby obttiing a soltiion to the titegral equation defining
the sidewash in terms of its prescribed boundary values.

In appendix A the expression for Vc is initially derived in a

z-plane which is obtained conformably from the v-ptie by the following
transformation:

rv’+h’z =x+iy=~

l+h’

where the plus sign is valid for x>O andtheminus sign for x<O.
Figure 6 is a sketch of the z-plane and shows that the wing-fin contour
of the v-plane becomes a slot along the real sxis (the x-axis) of the
z-plane. The details of the transfomtion from the v- to the z-plane
are given in appendix A. ti the z-plane the expressions for the u-,
v-, and w-velocities can be expressed much more compactly and simply

—


